3.121 \(\int \frac{\sec ^2(c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx\)

Optimal. Leaf size=73 \[ \frac{2 \tan (c+d x)}{d \sqrt{a \sec (c+d x)+a}}-\frac{\sqrt{2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d} \]

[Out]

-((Sqrt[2]*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(Sqrt[a]*d)) + (2*Tan[c + d*x])/
(d*Sqrt[a + a*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0876906, antiderivative size = 73, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {3798, 3795, 203} \[ \frac{2 \tan (c+d x)}{d \sqrt{a \sec (c+d x)+a}}-\frac{\sqrt{2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

-((Sqrt[2]*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(Sqrt[a]*d)) + (2*Tan[c + d*x])/
(d*Sqrt[a + a*Sec[c + d*x]])

Rule 3798

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(Cot[e + f*x]*(a
 + b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(a*m)/(b*(m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x
] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)]

Rule 3795

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sec ^2(c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx &=\frac{2 \tan (c+d x)}{d \sqrt{a+a \sec (c+d x)}}-\int \frac{\sec (c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx\\ &=\frac{2 \tan (c+d x)}{d \sqrt{a+a \sec (c+d x)}}+\frac{2 \operatorname{Subst}\left (\int \frac{1}{2 a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}\\ &=-\frac{\sqrt{2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right )}{\sqrt{a} d}+\frac{2 \tan (c+d x)}{d \sqrt{a+a \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.0773774, size = 83, normalized size = 1.14 \[ -\frac{\tan (c+d x) \left (\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{1-\sec (c+d x)}}{\sqrt{2}}\right )-2 \sqrt{1-\sec (c+d x)}\right )}{d \sqrt{1-\sec (c+d x)} \sqrt{a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^2/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

-(((Sqrt[2]*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]] - 2*Sqrt[1 - Sec[c + d*x]])*Tan[c + d*x])/(d*Sqrt[1 - Sec[
c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])]))

________________________________________________________________________________________

Maple [A]  time = 0.132, size = 121, normalized size = 1.7 \begin{align*} -{\frac{1}{ad\sin \left ( dx+c \right ) }\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}} \left ( \ln \left ({\frac{1}{\sin \left ( dx+c \right ) } \left ( \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) -\cos \left ( dx+c \right ) +1 \right ) } \right ) \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) +2\,\cos \left ( dx+c \right ) -2 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2/(a+a*sec(d*x+c))^(1/2),x)

[Out]

-1/d/a*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*(ln(((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/
sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+2*cos(d*x+c)-2)/sin(d*x+c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{2}}{\sqrt{a \sec \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^2/sqrt(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [A]  time = 2.28855, size = 701, normalized size = 9.6 \begin{align*} \left [\frac{\sqrt{2}{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt{-\frac{1}{a}} \log \left (\frac{2 \, \sqrt{2} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt{-\frac{1}{a}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, \cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{2 \,{\left (a d \cos \left (d x + c\right ) + a d\right )}}, \frac{\frac{\sqrt{2}{\left (a \cos \left (d x + c\right ) + a\right )} \arctan \left (\frac{\sqrt{2} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt{a} \sin \left (d x + c\right )}\right )}{\sqrt{a}} + 2 \, \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{a d \cos \left (d x + c\right ) + a d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/2*(sqrt(2)*(a*cos(d*x + c) + a)*sqrt(-1/a)*log((2*sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(-1/a
)*cos(d*x + c)*sin(d*x + c) + 3*cos(d*x + c)^2 + 2*cos(d*x + c) - 1)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) +
4*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a*d*cos(d*x + c) + a*d), (sqrt(2)*(a*cos(d*x + c) + a
)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c)))/sqrt(a) + 2*sqrt
((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a*d*cos(d*x + c) + a*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{2}{\left (c + d x \right )}}{\sqrt{a \left (\sec{\left (c + d x \right )} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral(sec(c + d*x)**2/sqrt(a*(sec(c + d*x) + 1)), x)

________________________________________________________________________________________

Giac [B]  time = 9.72297, size = 178, normalized size = 2.44 \begin{align*} -\frac{\sqrt{2}{\left (\frac{\log \left ({\left | -\sqrt{-a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt{-a} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} - \frac{2 \, \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - a\right )} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}\right )}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-sqrt(2)*(log(abs(-sqrt(-a)*tan(1/2*d*x + 1/2*c) + sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/(sqrt(-a)*sgn(tan(1/2
*d*x + 1/2*c)^2 - 1)) - 2*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*tan(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x + 1/2*c)^2
- a)*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)))/d